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ABSTRACT

The effects of the state excitation matrix Q1 in the smoothing routine of an extended

Kalman filter is investigated. A new algorithm to derive the Q1 matrix is also developed.

In addition, the accuracy of the filter was substantially improved by implementing a new

maneuver detection techniquZ. Several tracking scenarios are simulated and analyzed for

noise free and noisy cases and statistical data are obtained for the maneuver detection

technique. The program codes are included as appendices.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

During the last century, man has reached out over ever-increasing distances.

Manmade devices have been sent beyond our solar system and to the deepest points of

the oceans. These recent developments have focused new attention on an existing

problem: how to accurately track long-range devices along their voyages in unknown

environments. This problem is made even worse when only passive sensors can be used.

One particular problem applicable to naval technology is tracking a ship by lines of

bearing obtained by passive sensors. A powerful method of dealing with this problem,

known as Kalman filtering, has been used with great success since Kalman and Bucy

[Refs. 1, 2 ] first presented its principles 30 years ago.

This report further develops an existing Kalman filter to which a fixed-interval

smoothing algorithm has been added. In this research, we examine how the overall ac-

curacy of the extended Kalman filter is affected by applying a noise process in the

smoothing algorithm. We also develop a new maneuver detection technique and study

how the filter performs when using it. This research is based on previous work done by

Lieutenant Thomas K. Bennett [Ref. 31 and Lieutenant William J. Galinis [Ref. 4].

They investigated the problems of two ships tracking a third only by passive radio di-

rection finding equipment.

This report is organized into six major sections. The first section is this introduc-

tion, which serves as a guide to approaching this report. In Chapter 11, the physical

tracking system used for simulations in this report is modeled. Chapter III gives the

basic principles of the Kalman filtering and fixed-inte,-val smoothing. In Chapter IV,

we investigate how the noise process in the smoothing routine and a new maneuver de-

tection technique affect the accuracy of the extended Kalman filter. t ,pters V and VI



show the simulations and present the conclusions. The appendices list the program

codes used in this research.
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PROBLEM STATEMENT

A. THE SYSTEM MOL 1.

The system used in this thesis includes two sensors and one target ship. A two-

dimensional cartesian coordinate system is used, in which the positive x and positive y

directions correspond to East and North, respectively. The target and sensor ships are

both free to move throughout this coordinate space. For simplicity, the following as-

sumptions are made during the development of this model: [Ref. 41

" The effect of the wind, current and other forces on the ship are negligible.

" The ocean surface is considered flat; the curvature of the earth is neglected.

" Course and speed inputs are taken as constants (i.e., step inputs).

From [Refs. 5: p. 168,6: pp.12-131, the discrete-time, state-space representation -f

the model described above is

XA+ = 4OKXK + 0O1K (2.1)

where

xK I = state estimate vector,

^xj state vector,

x= state transition matrix and

x= disturbance.

A state vector XK is defined to contain the minimum number of the elements neces-

sary to describe the target. A fourth order state vector for this model, then, consists of

the position and velocity of the target in both x and y directions.



Xj

. - (2.2)
K=

LYKx

Next, a state transition matrix Oc is chosen to fit the target dynamics. Since the target

modeled in this problem moves linearly at a constant velocity, the 4, matrix is

I T 00

0 1 00
O'K= (2.3)

001T

0001

where T is the observation interval.

The unpredictable accelerations of the target are taken into account using the noise

vector co. The noise vector is a function of the transition matrix F, and the acceleration

matrix a,:

A = Fra--Fr (2.4)
Lay,,

where the noise transition matrix F, is defined as

T'/2 0

T 0
rK= T (2.5)

0 T2/2

0 T

4



Putting Equations (2.2) through (2.5) into Equation (2.1), the final state-space

equation for the system modeled in this problem can be written as

XK+I I T 0 0 xK T/2 0

XK+I 0100 XK T 0 [ax(2
=K1 0 1TY +/ [ / (2.6)

YK+I 0 0 1 T 0 T/2
K+,I L 0 0 0 ljyK - o L r

B. THE MEASUREMENT MODEL

For linear systems, measurements can be modeled using the following linear meas-

urement equation. [Refs. 5: p. 168,6: pp. 12-13J

ZK+I 2 H K+I +/ K+I (2.7)

where

=jr f measurements,

H = observation matrix,

,,=, state estimate vector and

Jj+j = measurement noise.

Unfortunately, many real systems are not linear. The system we studied in this

thesis falls in this category. Although this system has a linear state-transition equation,

it has a non-linear measurement equation, since the measurements, lines of bearings, are

non-linear functions of the system states. As it can be seen from the geometry of the

typical scenario in Figure 1, an appropriate model with measurement noise included for

the non-linear measurement process of this system would instead be [Ref. 3]

tan-V x - XnK + A (2.8)

Z~nK L JY,-Y" + 5



Y

N

E

_e v
0 t

V Y

STARGET
(XY'

I I
f --- r------- -

Sensor 1 / I

f Sensor 21

""-, x, -, .*

Figure 1. Typical Tracking Scenario

where

z., = observed lines of bearing by a sensor ship n, at time k,

xx , y,= position of the target ship on x, y axes, at time k,

XNC , y.= position of the sensor ship n on x, y axes, at time k and

6



= measurement noise.

Although there are several types of noise which disturb the measurements, it is the

atmospheric noise that makes the major contribution in the frequency range of interest

in this study. This is generally a non-white, non-Gaussian process. However, it can be

considered to be a white Gaussian process over an extended period of time in order to

more easily implement the extended Kalman filter. In this application, a white noise

model is used for the study of noisy cases.

7



III. THEORY

A. KALMAN FILTER

The Kalman filter removes random noise from the state estimates of a system by

adding a weighted error term to the predicted state estimates. The error term is simply

the difference between the filter's prediction of the measurement and the observed value

of that measurement at a particular time. The weighting factor, also called the filter

gain, is based on the predicted covariance of error between estimates and observed val-

ues. The basic operation of the filter can be described in several steps:

A priori estimates of the state -x are projected in time to some predicted state es-

timate !jr.1/x, and the predicted error covariance PE,.. 11 of these estimates is calculated.

The filter then calculates a gain vector G,+,, based on the predicted error covariance.

As mentioned before, the error is the difference between observed and predicted meas-

urements. Next, this error is multiplied by the filter gain and the result is added to the

predicted state estimates to give the updated estimate - The updated value of er-

ror covariance P is also calculated.

In short, the Kalman filter is a linear, minimum variance estimator. A block dia-

gram of the filter is in Figure 2. A more detailed explanation of the filter's operation

will be given later in this chapter. For further information on the derivation and appli-

cation of the Kalman filter, the reader should refer to [Refs. 7,8,9]

B. EXTENDED KALMAN FILTER

The Kalman filter explained above calculates the optimal estimate for the states of

linear systems. As mentioned before, the system we studied in this thesis has a linear

state-transition equation and non-linear measurement equation. Therefore it is not Un-

8
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State EstlmateXx .a

Observations z 4,, KALMAN FILTER

Error Est imate P

Figure 2. Block Diagram of the Kalman Filter.

ear. The adaptation of the Kalman filter to a non-linear system is called the extended

Kalman filter.

For the system studied in this thesis, the non-linear measurement equation can be

defined as:

ZK+1 = lt(-CA+,) + AK+1 (3.1)

9



We see that the only difference between this equation and the linear measurement

equation (2.7) is the observation matrix H. The H matrix is now a function of the sys-

tem states. In order to linearize the measurement equation, we have chosen in this thesis

to expand the observation matrix H in a Taylor series around the current estimate and

then to use only the first order term.

The following linearized form of the measurement equation is obtained directly from

previous work on this subject. Its development will not be repeated here since an ex-

cellent derivation of it is presented in these reports [Refs. 3,4]. The equations are:

rA A1
Yt1 II -YjX XIK -11/ _XnX+tHK+ -- 2 0 - A2  0 (3.2)

RK+1  RK+J

and

A2  2 A 2

RK+l = -tr+tz -Y,,k+,) + (xii+./9- X,, )

where

A - The psition estimates of the target at time K + 1, based on the

previous value at time K.

x, ,r Y llj =- The position of the sensor ship n at time K + 1.

Once the measurement process is linearized, the normal linear Kalman filter

equations can be used in the estimation process. The followving Kalman filter equations,

taken from (Ref. 51 and derived in [Refs. 5,10], are:

A = XKIK (3.3)

PK+11K = OPKIKO T + QK+I (3.4)

10



rK ~ Hkr  -
GK+, = PK+IIKH +1[HK+,PK+,IKHK+, + R] (3.5)

A ,=.+,,x+ G,+, [z, ,- HK, K+Ik] (3.6)

PK+IIK+I = [I- GK+IHK+3]PK+IIK (3.7)

The variables are defined as follows:

• C1/j = predicted state estimate,

X gg= state estimate (state vector),

= state transation matrix given by equation (2.3),

PK+11, = predicted state error covariance,

PK/K = state error covariance,

QK, f= state excitation matrix,

GK, = Kalman gain matrix,

R = measurement noise covariance matrix and

Hj, f= linearized measurement matrix given by equation (3.2).

The measurement noise covariance matrix R is a indication of the accuracy of the

measurements made. This matrix is:

A [(3.8)

The state excitation matrix Qc., used in equation (3.4) represents the system noise

process. This term is a measure of how closely the system model actually represents the

real system and to what degree the system is affected by noise. The derivation of the

Q,,t matrix will be studied in the next chapter.

As can be seen from equations (3.3) through (3.7), the basic operation of the filter

is a relatively straightforward recursive process. But the filter must be initialized before

11



processing the measurement data. When the filter is initialized, no prior value for the

state estimate - exists. Therefore the value of the first observed position is assigned

to it. The coordinates of observed positions can be calculated from the two lines of

bearings by using the following equations:

f y2 tan(92) +y, tan(0) + x2 -( .
x= [ - tan(01) - tan(02 ) yj tan(O1 )+x1  (3.9)

S[ y2 tan(92) + Y1 tan(O1) + x2 - x, (310)
L -tan(0 1) - tan(02)

Since there is no prior velocity information available at the moment of initialization,

the initial velocity estimate is taken as zero. Figure 3 shows the initialization procedure.

Since the initial state estimates will have some error, we pick some starting values

for the errors in initial position and velocity to initialize the error covariance matrix.

These are 100 nautical miles (Nm) in position and 0.5 Nm per minute (i.e., 30 kts) for

velocity [Refs. 3,41. The error covariance matrix can now be initialized as:

10000 0 0 0

0 0.25 0 0P0 1 = (3.11)
0 0 10000 0

0 0 0 0.25

Once initialized, the filter is ready to process the measurements. First, the state es-

timate and state error covariance matrixes are projected to the present time using the

matrix. Next, these predicted state estimates are used to calculate the H matrix. Finally,

the Kalman gains are calculated. The Kalman gain is a measure of where the filter's

confidence is being placed: either in the filter's estimation or in the current observation.

As is se in equation (3.5) the value of the Kalman gain is based on the predicted error

12
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Figure 3. The Initialization Procedure.

covariance m atrix. If P z, is large the Kalm an gain will approach unity. If Pir11, is

small, the gain will approach zero due to the finite value of the measurement noise

covariance R. By manipulating equation (3.6) we can see how varying the Kalman gain

alTects the process of updating state estimates.

X +1 lK+ I - GK+ J IIK+1 K+1 + GK+iZK+ (3.12)

13



As mentioned before, this equation shows that a large Kalman gain places more

weight on the current observation. On the other hand, a small gain causes the factor

of [I- G ,,H,. 1] in equation (3.12) to approach unity, in this sense placing more em-

phasis on the filter's estimates. As can be seen from equation (3.7), the factor of

I - G ,,] is used to update state error covariance matrix.

C. SMOOTHING ALGORITHM

Smoothing is a non-real-time data process used to reduce error in state estimates

produced by a Kalman filter. Let time K be within the time interval 0 to N, so that

0 < K < N. A Kalman filter's state estimate for time K, denoted by -,, is based only

on measurements occuring up to time K. But the smoothed state estimate is based on

the measurements that occurred over the entire time interval 0 to N. This smoothed

estimate is denoted by -.i,.,. The smoothed error covariance at time K is represented by

Pt,,, This quantity has no impact on the calculation of the smoothed estimate IN but

it is an indicator of how well the smoothing filter is working. If Psj,, < Pxl1 , the

smoothed estimate is better than or equal to its filtered estimate except for the last data

point where both smoothed and filtered estimates are equal. The smoothing algorithm

operates backwards in time, beginning at time N and ending at time zero. Therefore,

since the last filtered estimate at time N is taken as the first smoothed estimate, P,

must be equal to P,,, at this last data point. This can be seen graphically in Figure 4.

Meditch [Ref. 5] places smoothed estimates into three classes:

Fixed-Interval smoothed estimate , denoted by -,4t, where K - 0, 1, ..., N-i; N is a

positive integer.

Fixed-Point smoothed estimate , denoted by .I, where J = K + 1, K +2, ....; K is a

fixed integer.

Fixed-Lag smoothed estimate , denoted by -1+N where K = 0, 1, ....; N is a fixed

positive integer.

14



Nieari square es(imatiun error

Forward filter Backward fiher

Time

Figure 4. Advantage of the Performing Optimal Smoothing.

In this thesis a fixed-interval smoothing filter is used. The basic block diagram of

this filter is shown in Figure 5. The equations to implement the smoothing algorithm

are obtained The equations to implement the smoothing algorithm are obtained From

[Ref. 5: pp. 216-2241 and are shown below:

AK = PK/ICkrPK+I/K (3.13)

A A AA AQ 3.4
XX,V = XK K + A/KXK+I/V - X+INK] (3.14)

15



FROM EXTENDED KALMAN FILTER

SMOOTHED STATE

A, ESTIMATE xvr

DELAY 14

K=N-I .....

Figure 5. Block Diagram of the Smoothing Filter.

PKI = PKIK + Aj PK+ll - PK+IIK]IA (3.15)

where

Ax = smoothing gain matrix,

-x = smoothed estimate at time K,

PKI = smoothed error covariance at time K,

-VX and PX, = state estimate and error covariance stored by the extended Kalman

16



filter routine and

-,/, and PK+,K = predicted state estimate and predicted error covariance stored

by the extended Kalman filter routine.

Several sources were helpful in understanding these equations. [Refs. 7,8,111 As it

can be seen from equation (3.15), the smoothed estimate provided by a fixed-interval

smoothing algorithm is simply the extended Kalman filter estimate adjusted by a

weighted error term. The error term is the difference between the smoothed estimate

calculated for the previous data point and the predicted estimate calculated by the ex-

tended Kalman filter. It is also clear that the fixed-interval smoothing algorithm uses

the values of X^,,, and x+I,,/k which are stored in the Kalman filter routine for each iter-

ation. Additionally the values of PK,, and P,+,,x must be provided for the smoothing

routine.

17



IV. THE NOISE PROCESS IN FIXED-INTERVAL SMOOTHING

ALGORITHM.

A. GENERAL

This work is devoted to studying the effects of the state excitation matrix Qr in the

smoothing algorithm. To accomplish this, the magnitude of this matrix is changed dur-

ing the assumed maneuver periods and the effects of these changes on the smoothing

algorithm's accuracy are investigated. Also, a new maneuver detection technique is de-

veloped to determine the maneuver periods.

B. NOISE PROCESS

The state excitation matrix Q, represents the system noise process. This matrix is

a function of the acceleration matrix az and the noise transition matrix F,, so that

QK= [0KaC] (4.1)

where 0j is given by equation (2.4). Substituting equation (2.4) into equation (4.1), we

find

[EC 2] Et~a,,y]1T

QK =rKI aK (4.2)

For reference, the noise transition matrix F1 is given by equation (2.5). The Qr matrix

allows for any random target maneuvers and also serves to account for any model in-

accuracies. These inaccuracies are the differences between the true action of the target

and its motion as characterized by equation (2.1). QK also prevents the gain matrix Gt

from approaching zero by ensuring some uncertainty in the predicted state error

18



covariance matrix . By substituting equation (2.5) into, the equation (4.2),

equation (4.2) can be expanded as follows:

l Ea x1T4 1 E 2 1 E l7 E1a ] 3

22 [. 1 T ~~±E[ a]T -a2 E[axy]T4 E[axy,]T2

2 2xQK = I I [ 2~yxT :1Ea ]y (4.3)

The velocity of the target can be described in terms of its linear velocity and heading.

From Figure I on page 6, this relationship is given as

v. = v, sin O, (4.4)

VY = Vt cos Ot (4.5)

By differentiating equations (4.3) and (4.4) we obtain the target's acceleration in the

x and y directions:

a. = 0, sin E, + vG, cos Ot

ax = t - + ,vy (4.6)

and

ay = i, cos 0, - vb, sin 0,

19



a= "Y+ ,,

ay = , + O,vx (4.7)

The noise is initially described by

EEi] =E[o] =0 (4.8)

El[t] a 2  (4.9)

and

E[01] = (4.10)

By squaring equations (4.6) and (4.7) and taking the expectations, the variances of

target's accelerations, a, and a., are:

E~[a ]2 a Y4a ,][V -E '+ , (4.11)

and

E[ay1 = 12 2 2 2 (4.12)

We also find that the covariance of a, and a, denoted by a,, or a,. is

r =a 2 (4.13)
EEa~'] = EfaXk'- vx1( € "- J (4.13)
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From [Ref. 121, the position of the target assuming speed is constant

XX+I = XK + vxT (4.14)

YK+I = YK + vyT (4.15)

and the position of the target assuming acceleration is constant:

XX+I = xK + vxKT + -1 ax2rT (4.16)

1 2

YK+ =YK+ vyxT+ - ayT (4.17)

By comparing the equations (4.14) thorough (4.17), it can be seen that the expected

position errors due to the unknown accelerations of the target can be defined as

4 l.,.+] E=Eaxi T2 (4.18)

and

E.K+E] = Eyo] -T2 (4.19)

The variances of these errors are

E[Xt4 1  E[o,,] (4.20)

and

E[ ' 1]= - E[2]T4 (4.21)
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By comparing equations (4.20) and (4.21) with equation (4.3), we see that these

equations are equal to elements (1,1) and (3,3) of the Q1 matrix. Out of all the elements

in the QK matrix, these two elements have the greatest effect in compensating the posi-

tion errors. Since it is most important to compensate the error on the axis which has

the maximum error variance, the algorithm developed determines the Q, matrix using

these elements for the magnitude of the Q matrix. This algorithm first compares the

error variances on the x and y axes, o and a, to determine which axis has the greater

error variance. If a, > a,, Qr matrix becomes

Q, = Q1,1 )l (4.22)

where I is the unity matrix and

.- ~- -E[a,] T4

If a, < a,, the Qx matrix is

QK = Q(3,3)I (4.23)

where

1 2

Q(33= )- E[a]T4

C. THE STATE EXCITATION MATRIX IN THE FIXED-INTERVAL

SMOOTHING ALGORITHM

As mentioned before, the fixed-interval smoothing filter uses as input the state esti-

mates and error covariances calculated by the forward-time Kalman filter. But in order

to see the effects of the state excitation matrix Qr in the smoothing algorithm, the pre-

dicted error covariance matrix P,4 ,,, is recalculated in the smoothing routine. The pre-
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dicted state estimates -kK+t/K are also recalculated in the smoothing routine. By

recalculating these matrices, we attempted to get a feeling for the expected magnitude

of the smoothing error. The intent was to enable the the filter to carry along its own

error analysis. The new system of the recursive equations for the fixed-interval

smoothing becomes: [Refs. 4,13]

A OA(.4
XK+11K X KIK (4.24)

PK+IIK - 4 PKIKO r+ QK (4.25)

T -1

AK= PKIK Pi+IIK (4.26)

A = A [ A (4.27)XKlIN XKIK + A FXK+Iii-XK+IK.

PKIN = PKIK + AtKCPK+I/N - PK+IIKA T (4.28)

As seen from equation (4.26), the smoothing filter gains are a function of the error

covariance. As the predicted error increases, the smoothing gains decrease due to the

inverse relationship between smoothing gains and the predicted error covariance matrix.

In this way the smoothing filter can compensate for a large expected error by placing

more emphasis on the Kalman filter estimates. By substituting equation (4.24) into

equation (4.27), we obtain

A A IA
XKIN = XKIK +AK XK+j /IV A K

, = - AI]O K + AtQK+II (4.28)

Equaticn (4.28) shows that a small Ar causes the factor of I- Ago I to approach

unity, thereby placing more emphasis on the forward-time Kalman filter estimates ^XKIK
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We can exploit this behavior of the smoothing filter and use it to adapt the smoothing

filter to detected target maneuvers.

D. MANEUVER DETECTION

Should the target maneuver during the tracking process, the filtered estimates tend

to diverge from the true estimates. This introduces error into the state estimates.

Therefore a procedure must be developed to detect the target's maneuvers. This can be

accomplished by monitoring the filter residual process.

The residual process of the extended Kalman filter is taken as the difference between

the observed position and the filter's predicted position estimates. This process can be

defined as

IZK- IK-l (4.29)

The maneuver detection technique implemented calculates the residual value for each

observation and compares this to the two maneuver gates. The gates are defined as

three times and eight times the predicted standard deviation. Some of the principles

underlying this technique are presented in [Ref. 14]. To define the predicted standard

deviation, error ellipse equations are used. More detailed information about error el-

lipses can be found in [Ref 6: pp. 17-18]. These equations are:

22
2 + coVIxy)

2 2

2 x + ay cov(xy)
7Y"- 2 sin 20 (4.31)

where

a2, and a,' variances in the original cartesian coordinate system,

a and a, = variances along the major and minor axis oriented by
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O-- tan 2cov-y) (4.32)
2 [72 2]ax -ay

By taking the square roots of equations (4.30) and (4.31), the standard deviations

on the x' and y' axes of the error ellipse are

2Ox + Oy cov(xy)
a= 2 + sin 2-0 (4.33)

and

Si 2Gx + %y cov(xy)
a1= 2 sin 20 (.4

The maneuver detection algorithm compares the two standard deviations which are

represented by the lengths of the x' and y° axes of the error ellipse shown in Figure 6.

It selects the larger one as a predicted standard deviation, allowing the gates to take on

the following values:

LOWERGA TE = 3a

and

UPPERGA TE = 8aK

where a. is the larger of the two standard deviations, a,. or a,.

The reason for choosing the value of 3a, for the lower gate is well explained in [Ref.

141. The value of the upper gate, known as a "Glitch" gate, is dependent on the opera-

tional characteristics of the target. This gate rejects motions that the target could not

possibly make. In our problem, extremely high linear or tangential accelerations are

examples of such behavior. When the residual exceeds this gate, the filter recognizes
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Figure 6. Error Ellipse

that this motion is impossible for the given target and so must be due to noise. The

value of 8tyq gave the best results in this application.

For each observation, the calculated residual is compared to the two gates by the

maneuver detection algorithm in the extended Kalman filter routine. If the residual is
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less than the value of the lower gate, the filter continues on and processes the next ob-

servation. If the residual is larger than the value of the upper gate, the filter ignores that

observation by setting filter gains equal to zero, thereby making the state estimates equal

to the predicted estimates,

A A
XK+I/K+t = XK+II K  (4.35)

This procedure will work well for isolated bad observations. However, if there are se-

veral consecutive bad observations, the filter can conceivably lose track of the target as

the filter's state estimates diverge more and more away from the actual target states.

To remedy this, the extended Kalman filter sets the filter gains equal to zero only for the

first of two consecutive bad observations but uses non zero gain for the second. If the

residuals of the two consecutive observations are in the zone between the two maneuver

gates, shown as concentric circles in Figure 7, a maneuver is detected and compensation

algorithm begins. The value of two provides a trade-off between fast response and low

false alarm rates.

The maneuver detection algorithm does not run a second time in the fixed-interval

smoothing routine, since it can use the maneuver times detected in the extended Kalman

filter with no loss of accuracy. Additionally, the fixed-interval smoothing algorithm

"backs up" and considers the first point ignored by the Kalman filter as a maneuver

point, since it knows that if the maneuver is detected at some observation time in the

Kalman filter routine, it must have started one observation earlier.

During the compensation, the state excitation matrix QK is increased by multiplying

the coefficients along the main diagonal by a factor of 2.0. These coefficients account

for random course and speed changes of the target. As the Qr matrix is increased, the

predicted error covariance P,,, is also increased because of the direct effect of the Qr

matrix on th nagnitude of the predicted error covariance. And, as the P,,t,,, matrix
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Figure 7. Diagramming the Maneuver Detection Technique

increases, the outputs of both the extended Kalman Filter and the smoothing filtcr are

affected as explained bWfore. The multiplicative constant of 2.0 was found by trial and

error.
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V. COMPUTER SIMULATIONS

A. GENERAL

The SHIPTRACK.FOR extended Kalman filter algorithm was first implemented in

[Ref 3] on an Apple Macintosh Plus microcomputer. In [Ref 4] the fixed-interval

smoothing algorithm was added, the new algorithm was named SHIPSM.FOR this al-

gorithm was adapted to run on an IBM PC. This research takes the program one step

further by adding new algorithms to detect maneuvers and to derive the state excitation

matrix Q,. A new program SHIPMANE is used in the following manner for the simu-

lations.

The raw data required by the SHIPMANE.FOR is generated by RAWDATA.FOR.

This program is modified from the program TRACK.FOR used in [Ref. 3]. Our inten-

tion was to make the target follow a circular track during the maneuver period rather

than make a sharp turn. Program RAWDATA.FOR asks the user for the initial posi-

tions, speeds and courses of the target and the tracking ships, the total tracking time and

the observation interval. It also requests the desired maneuver period and any speed and

course changes of the target during this period. The outputs consist of noisy or noise

free bearings from each tracking ship to the target, the updated positions of all the ves-

sels and the time of the observation are stored in the file called TRKDATA.DAT.

The program SHIPMANE.FOR reads and processes the data stored in

TRKDATA.DAT. The outputs of this program are mainly stored in three files. The

first file FILDATA.DAT stores the results of the extended Kalman filter portion of the

program SHIPMANE.FOR while the fixed-interval smoothing results are included in

the second file SMDATA.DAT. The results of the maneuver detection algorithm are

stored in the third file MANEUDATA.DAT during the process of the extended Kalman
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filter portion of the SHIPMANE.FOR. Additionally, a fourth file TRUDATA .DAT,

is created for graphic purposes, and consists of the actual positions (tracks) of the target.

Although this file is useful for the purposes of this thesis, in real world tracking problem

this information would seldom, if ever, be available. In this thesis the terms "real" or

actual", when applied to tracks or maneuvers, refer to the data contained in this file.

"Assumed" tracks or maneuvers refer to what is detected by the extended Kalman filter

or the smoothing routine.

The MATLAB graphic routines are used to obtain the graphical representations of

the data included in the output files of the SHIPMANE.FOR. Five graphic outputs are

obtained for each simulation case except for the third case, which has only two. For all

cases except the third, the first graph is a geographic plot which show extended Kalman

filtered track versus the the actual and observed target tracks. The second graph com-

pares the track resulting from the fixed-interval smoothing with the actual and observed

target tracks. The third graph is the time plot shoing the filtered, smoothed and ob-

served position errors. The fourth is also a time plot and shows the residuals for each

observation along with the threshold values of the upper and lower maneuver detection

gates. In the third simulation case, only this graph is included. The fifth graph gives the

overall results for each case. Due to the limited number of variables which can be used

in the single MATLAB graphic package, the true track of the target was shown as a line

without each observation point being shown.

Although both of the programs SHIPMANE.FOR and RAWDATA.FOR can eas-

ily be modified for multi-bearing measurements, the simulation cases used only two

bearings per observation as measurements, one from each tracking ship. The set of the

simulations studied in this chapter consists of following cases:

* Case #1: 60 ° maneuver toward tracking ships, with noiseless measurements.

* Case #2: 600 maneuver away from tracking ships, with noiseless measurements.
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0 Case #3: Test for the maneuver detection algorithm. (1) Case #1 with different
maneuver period. (2) Case #2 with different maneuver period.

* Case #4: 60* maneuver toward tracking ships, with noisy measurements.
9 Case #5: 120" maneuver toward tracking ships, with noisy measurements.

* Case #: 60*maneuver away from tracking ships, with noisy measurements.

* Case #7: 120" maneuver away from tracking ships, with noisy measurements.

In all cases, the target ship starts at the position (-75,150). The initial course of the

target is 090* and the initial speed of the target is 15 knots for each case. The speed of

the target is held constant throughout the simulation cases. The initial positions of the

tracking ships are (-40,0) and (-60,0), and courses and speeds are 030* and 10 knots for

each case. The speeds and courses of the tracking ships are also held constant. The

observation period is 30 minutes and all cases run for 450 minutes.

The success of the algorithm can be expressed by the percentage improvement be-

tween the total error in observed positions and the total errors in the filtered estimates

and smoothed estimates, respectively. This percentage indicates of how much the ex-

tended Kalman filtering and the fixed-interval smoothing improve the position accuracy

over the observations. For the extended Kalman filter, this percentage is simply the ra-

tio between the the total error in the observed positions and the total error in the filtered

estimates throughout the simulation case or time period of interest. In some cases this

was recalculated specifically for maneuver periods. The percentage improvement due to

the smoothing was similarly the ratio between the total error in the observed position

estimates and the total error in the smoothed position estimates. Also, the average po-

sition errors due to the extended Kalman filter and the ffixed-interval smoothing algo-

rithm are given for the different cases. The average position error due to the extended

Kalman filter is calculated by summing the position errors of the filtered position esti-

mates and then dividing by the total number of observations. The average position error

due to the smoothing routine is also found by summing the position errors of smoothed
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estimates over the entire simulation (or in some cases, over the number of observations

of interest) and dividing by the number of observations. The average position errors

show how well the extended Kalman filter and fixed-interval smoothing algorithm work

for a particular simulation case.
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B. CASE #1

The target is steaming due east at 15 knots at the beginning of this case. Between

time equals 150 minutes and and time equals 300 minutes, it makes a 600 course change

toward the advancing tracking ships on a circular track. The results for the filtering and

smoothing are shown in Figure 8 and Figure 9. Since there is no noise in the meas-

urements, the observed track equals the true track. Although the measurements are not

noisy, the filter estimates diverge very slightly for the first several observations. This

initial error, shown in Figure 10, is due to the inaccuracy of the initial state estimates.

This inaccuracy also causes the high values for the upper and lower maneuver gates for

the first few observations, as can be seen in Figure 11. When the target starts its turn

at time equals 150, the tracking error begins to increase. It decreases, however, as the

filter regains the target track and it reaches zero one observation after the target finishes

its maneuver.

The fixed-interval smoothing algorithm improves the position accuracy over the ex-

tended Kalman filter by an average of 35% during the real maneuver period, between

time equals 150 and equals 300 minutes, and 22% during the overall simulation.

As can be seen in Figure 11, the residuals appear between the upper and lower

maneuver gates for time equals 240,270 and 300. Since two consecutive residuals be-

tween the upper and lower gate values are necessary for the maneuver to be detected,

the extended Kalman filter recognizes times 270 and 300 as a maneuver period. Time

240 is ignored by the Kalman filter. The smoothing algorithm, however, does not ignore

time 240, since it knows that if the maneuver was detected at time 270, it must have

begun at time 240. Therefore, the maneuver period for the fixed-interval smoothing al-

gorithm is taken as times 240, 270 and 300. The overall results of this case can be seen

in Figure 12.
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Figure 8. Thie Results of the Kalman Filter Tracking for Case #I1
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C. CASE #2

In this case, the target makes a 600 maneuver away from the two tracking ships.

The target's initial course is 0900 at 15 knots. Between times 150 and 300, it turns

northeast to a new course , 030, on a circular track. Again, the observed and true

tracks are the same due to the lack of measurement noise. T results of filtering are in

Figure 13 and the results of the smoothing routine are in Figure 14. The initial error

in Figure 15 and the high maneuver gate values for the first few observations in

Figure 16 are again due to the error in the initial estimates.

The filter error starts to increase when the target begins to maneuver at time 150.

When the target completes its maneuver, the error approaches zero. Since the target

starts to pull away from the tracking ships, the filter error reaches zero later than it did

in the previous case. From Figure 15, we can see how the fixed-interval smoothing

routine improves the filter's estimate. The smoothing algorithm decreases the position

error of the extended Kalman filter by an average of 22% for the overall case and by an

average of 38% for the real maneuver period between 150 and 300 minutes.

From Figure 16, the residuals at times 240, 270 and 300 are in the maneuver zone.

The maneuver period is detected for times 270 and 300 for the extended Kalman filter

and for times 240, 270 and 300 for the smoothing filter. The final results of this case are

in Figure 17.
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D. CASE #3

In this case, the two previous cases are tried with different maneuver periods in order

to test the performance of the maneuver detection algorithm. Therefore only the figures

which show the results of the maneuver detection algorithm are included.

1. Case #1 With Different Maneuver Period

In this part of the case, Case #1 is again tried with the new maneuver period

from time 270 to time 390. From Figure 18, it can be seen that the residuals at times

300, 330, 360 and 390 are between the upper and lower gates. The maneuver period is

between 330 and 390 minutes for the extended Kalman filter algorithm and between

times 300 and 390 for the fL'ed-interval smoothing algorithm.

2. Case #2 With Different Maneuver Period

In this part, Case #2 with a new maneuver period, this time between 90 and 270

minutes, is simulated. In Figure 19, the residuals are in the maneuver detection zone

at 180, 210, 240 and 270 minutes. In the extended Kalman filter routine, the maneuver

detection algorithm detects the maneuver at 210, 240 and 270 minutes. For the fixed-

interval smoothing algorithm, the maneuver period begins at time 180 and ends after

time 270.
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E. CASE #4

This case is the same as Case #1 except noise is added to the measurements. The

filtering and smoothing results for this case are shown in Figure 20 and Figure 21. At

the beginning of the tracking problem, the error is high. However, after the target ma-

neuvers, the vessels close each other and the position error decreases rapidly.

From Figure 23, it is seen that the residuals are between the maneuver gates at

times 180 through 330. The maneuver period for the extended Kalman filter is from 210

to 330 minutes. During this period the improvement in position error due to the Kalman

filter is 32%. The maneuver period for the smoothing filter is between times 180 and

330, and the position error improvement due to the smoothing filter is 78%.

It is also seen that the maneuver detection algorithm recognizes a bad observation

at time 60. As Figure 20 shows, the extended Kalman filter estimates for this point

appear to be only the projections of the previous estimates in time. Therefore the posi-

tion error of the extended Kalman filter for this point is 145% worse than the observed

position error, while the smoothed position error is only 4% worse. The average posi-

tion error is 3.8 Nm for the extended Kalman filter and 2.5 Nm for the smoothing filter

over the entire tracking period. The overall results for this case are in Figure 24.
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Figure 23. The Results of the Maneuver Detection Algorithm for Case #4
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F. CASE #5

This case includes a 120 ° turn which, if undetected, will cause an unacceptably high

error. The target turns to a new course of 2100 by following a circular track between

times 150 and 300. Again, the observed position error decreases rapidly after the target

completes its maneuver, since all the vessels start to close each other. The extended

Kalman-filtered and smoothed results can be seen in Figure 25 and Figure 26.

The observed, filtered and smoothed position errors are shown in Figure 27. The

extended Kalman filter improves the position accuracy by 46% over the observed posi-

tion errors for the entire tracking period, and the improvement due to smoothing is 73%

over the same period. The maximum filtered position error is around 6 Nm except at

time zero, while the average filtered error is 3 Nm. The maximum smoothed position

error is 4 Nm and the average smoothed position error is 1.5 Nm.

The maneuver period for the extended Kalman filter is from 180 through 330 min-

utes, during which the improvement due to the extended Kalman filter is 46%. The

maneuver period for the fixed-interval smoothing is between times 150 and 330, and the

position accuracy is 55% over the observed position errors for the maneuver period

alone. The observation at time equals 120 is recognized as a bad observation. The

overall results are in Figure 29.
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G. CASE #6

This case is the same as Case #2, with the addition of noise to the measurements.

The results of the extended Kalman filtering and smoothing are in Figure 30 and

Figure 31. /

From Figure 32, the maximum Kalman filter position error is 8 Nm at time equals

30 while the average filtered position is 3.3 Nm. The maximum errors are 3.5 Nm at

time 420 and 6.5 Nm at time 450, which the filtered and smoothed errors had to be same,

and the average error is 2.1 Nm for the smoothed errors. This case shows the general

improvement in the filtered and smoothed estimates. The position accuracy increases

by 47% with the extended Kalman filter and by 65% with the fixed-interval smoothing

filter.

As seen in Figure 33, the residual values are in the maneuver zone at times 60, 180,

210, 240, 270 and 330 minutes. No maneuver detection occurs at times 60 and 330, since

the residuals immediately following these times are out of the maneuver zone. The ma-

neuver periods are detected from 210 to 270 minutes for the extended Kalman filter and

from 180 to 270 minutes for the smoothing filter. The improvement in the accuracy of

the position estimates is 49% due to the extended Kalman filter and 60% due to the

smoothing filter.

Figure 33 also shows that the maneuver detection algorithm recognizes the obser-

vations at times 120, 300 and 420 as bad observations. As can be seen from Figure 30,

the filtered positions are the projections of the previous estimates in time with no noise

adaptation being made. For each of these times the filtered estimates are more accurate

than the observed estimates and the smoothed estimates are the most accurate of all.

The average improvement in the position estimate for these three observations is 56%

for the extended Kalman filter and 83% for the smoothing filter. Figure 34 shows the

overall tracking and smoothing results for this case.
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H. CASE #7

This case depicts a 1200 target maneuver away from the tracking ships. The filtered

and smoothed tracks are in Figure 35 and Figure 36.

The observed, filtered and smoothed position errors are in Figure 37. The accuracy

of the position estimates is increased by 47% with the extended Kalman filter and by

65% with the fixed-interval smoothing throughout the entire tracking period. The av-

erage position error due to the Kalman filter is 5.4 Nm while the average position error

of the smoothed estimates is 2.3 Nm. The smoothed error is always less than 5 Nm with

the exception of the last observation time (i.e. time 450) where the error is 5.4 Nm.

From Figure 38, the maneuver period is detected as times 180, 210, 240 and 270 for

the extended Kalman filter and as times 150, 180, 210, 240 and 270 for the smoothing

algorithm. During these periods, the accuracy in the position estimates is improved by

42% with the Kalman filter and by 72% with the smoothing. The observations of times

90 and 300 are recognized as bad observations. The Kalman filter improves the position

accuracy by an average of 68% and the average improvement due to the smoothing

routine is 90% for these two points. The overall results for this case are shown in

Figure 39.
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VI. CONCLUSIONS

We have tried to improve the accuracy of the extended Kalman filter with a fixed-

interval smoothing routine by implementing a new maneuver detection algorithm.

Whereas maneuver detection algorithms are normally applied only to the extended

Kalman filter, we apply this algorithm both to the extended Kalman filter and to the

fixed-interval routine to adapt them both to unpredicted maneuvers of the target. We

studied the effects of varying the state excitation matrix QK in the fixed-interval

smoothing during the assumed maneuver periods. Several simulation cases were run and

analyzed in order to test the performance of the algorithm.

Although some maneuver points were missed, the maneuver detection algorithm

worked well during the simulations. The probabilities of a maneuver being detected for

noise free and noisy cases are shown in Table 1 and Table 2. In order to obtain these

probabilities a large number of simulations (i.e. 10) for both noise free and noisy cases

were run on the IBM PC. Due to space constraints, just four representative runs each

were presented in the previous chapter.. However, in Table I and Table 2 the results

of all ten runs are shown for the fixed-interval smoothing routine only. To get the

probabilities of a maneuver being detected in the extended Kalman filter, the reader must

shift the numbers in both tables one cell right. In both Table 1 and Table 2, the ma-

neuver was executed at N equal zero.

With a new maneuver detection technique, the fixed-interval smoothing routine im-

proved the accuracy of the target's position estimates in all the simulation cases. This

improvement was 35- /6% over the observed target positions and over 35-55% over the

Kalman filter's estimates. Applying the new maneuver detection technique also im-

proved the accuracy of the extended Kalman filter by 45-50% over the entire time in-
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Table 1. Probabilities of a Maneuver Being Detected at Point N in a Noise Free
Enviroinment for Fxed-Interval Smoothing Algorithm (Maneuver Executed
at 0)N = 0)

N=0 N=l N=2 N=3 N=4 N=5

0% 0% 25% 75% 100% 100%

Table 2. Probabilities of a Maneuver Being Detected at Point N in a Noisy
Enviroinment for a Fixed-Interval Smoothing Algorithm (Maneuver Exe-
cuted at N = 0)

N=0 N=I N=2 N=3

20% 80% 100% 100%

terval. Where the accuracy was most improved by this technique during the maneuver

periods: here the accuracy increased by 30-60% using the extended Kalman filter and

60-80% using the the fixed-interval smoothing algorithm over the observed positions

during the actual maneuver periods. And during the maneuver periods the smoothed

estimates were 30-70% more accurate than the Kalman filter's estimates.

These significant improvements were obtained, in part, by using the time-varying

values of the state excitation matrix Qr. However, there is a disadvantage to this tech-

nique. Since this matrix is added to the predicted error covariance matrix P,,,K-, high

values of the matrix Qr will cause the predicted error covariance matrix to grow

boundlessly which will make the filter become unstable. Also, increasing the magnitude

of the state excitation matrix in the fixed-interval smoothing algorithm makes the
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smoothing filter estimates diverge to the extended Kalman filter estimates. This in-

creases the need for a more accurate extended Kalman filter, since the accuracy of the

smoothed estimates in this case depends to a large degree on the extended Kalman fl-

ter's estimates.

There are at least two areas which can be investigated to develop the tracking algo-

rithm more fully. The first is research in new noise models. The model used was a white

noise process. Although this model is relatively adequate for representing atmospheric

noise over an extended time period, better models could be used which take into account

random noise spikes, the lightning effects, of the atmospheric noise process. The second

area is adapting the algorithm for multi-target tracking. Improving the ability of the

algorithm to track and identify two or more targets would have great value in ship

tracking and targeting problems.
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APPENDIX A. THE EXTENDED KALMAN FILTER WITH FIXED

INTERVAL SMOOTHING ALGORITH VI
C A*A SHIPMANE. FOR

C**
C* THIS A EXTENDED KALMAN FILTER TRACKING ROUTINE WITH THE FIXED *
C* INTERVAL SMOOTHING ALGORITHM. THIS PROGRAM USES BEARINGS TAKEN *
C* FROM TWO SENSOR SHIPS TO THE TARGET. A NEW MANEUVER DETECTION *
C* ROUTINE IS IMPLEMENTED. THE NEW ALGORITHM TO DERIVE THE STATE *
C* EXCITATION MATRIX Q IS ALSO DEVELOPED. TO RUN THE PROGRAM: *
C**
C* 1) RUN THE PROGRAM <RAWDATA. FOR> LOCATED IN APPENDIX B TO *
C* PRODUCE THE RAW DATA. *
C**
C* 2) RUN THE <SHIPMANE.FOR> *
C**
C* THE OUTPUTS OF THE PROGRAM STORED IN THE FOLLOWING FILES: *
C* *
C* 1) THRDATA = INCLUDES THE THERESHOLD VALUES OF THE *
C* MANEUVER GATES AND RESIDUAL CALCULATED *
C* FOR EACH OBSERVATION. *
C* *
C* 2) CIRCDATA = INCLUDES THE REQUIRED DATA TO DRAW THE *
C* MANEUVER GATES AS A CONCENTRIC CIRCLES *
C* AROUND THE PREDICTED FILTER ESTIMATES.
C**
C* 3) BEGINDATA = INCLUDES THE FIRST POINTS, IGNORED BY *
C* THE EXTENDED KALMAN FILTER, OF THE TARGET *
C* MANEUVERS TO BE USED BY THE FIXED-INTERVAL *
C* SMOOTHING ALGORITHM. *
C**
C* 4) MANEUDATA = INCLUDES THE DETECTED MANEUVER POINTS. *
C**
C* 5) TRUDATA = INCLUDES THE ACTUAL POSITION OF THE TARGET *
C* FOR EACH OBSERVATION TIME. *
C**
C* 6) FILDATA = INCLUDES THE EXTENDED KALMAN FILTER'S POSITION *
C* ESTIMATES ALONG WITH THE OBSERVED POSITIONS, *
C* KALMAN FILTER ERROR AND OBSERVATION ERROR. *
C* *
C* 7) SMDATA = INCLUDES THE SMOOTHED POSITION ESTIMATES AND *
C* SMOOTHING ERROR. *
C* *
C* TO GET THE GRAPHIC RESULTS: *
C* *
C* 1) COPY THE FILES TRUDATA, FILDATA, SMDATA AND MANEUDATA INTO *
C* THE MATLAB SUB-DIR. *
C* *
C* 2) RUN THE PROGRAM <SHIPTR.M> IN THE MATLAB SUB-DIR. THE *
C* GRAPHIC RESULTS WILL BE STORED IN THE META FILE SHIPTR.MET. *
C **********........ . ...... .....
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C ***VARIABLE DEFINITIONS***

C AK = SMOOTHING FILTER GAIN MATRIX
C AKT = TRANSPOSE OF AK
C BD = BAD OBSERVATION INDICATOR
C BOC = BAD OBSERVATION COUNTER WHICH PROVIDES
C THAT ONLY THE FIRST OF TWO CONCECUTIVE
C BAD OBSERVATIONS WILL BE RECOGNIZED
C BRG = MEASURED TARGET BEARING IN RADIANS
C BRKKM1 = PREDICTED TARGET BEARING MEASUREMENT
C IN RADIANS, BRG(K/K-1)
C DBRG = MEASURED TARGET BEARING IN DEGREES
C DT = TIME DELAY BETWEEN OBSERVATIONS,
C T(K) - T(KI)
C DTOR = DEGREE TO RADIAN CONVERSION FACTOR
C FACI = RECIPROCAL OF VARE
C G = KALIAN GAIN VECTOR
C H = MEASUREMENT MATRIX
C HDG = TARGET HEADING IN DEGREES BY KALMAN FILTER
C HT = TRANSPOSE OF H
C I = COUNTER
C IMAT = 4 X 4 IDENTITY MATRIX
C J = COUNTER
C K = ITERATION INTERVAL
C PDIFF = POSITION DIFFERENCE BETWEEN OBSERVED AND
C PREDICTED STATE ESTIMATES
C I Z(K) - X(K/K-1) I
C PHI = DISCRETE-TIME STATE TRANSITION MATRIX
C PHIT = TRANSPOSE OF PHI
C PKK = ESTIMATION ERROR COVARIANCE MATRIX, P(K/K)
C PKKS = SMOOTHED ERROR COVARIANCE MATRIX
C PKKM1 = PREDICTED ESTIMATION ERROR COVARIANCE
C MATRIX, P(K+1/K)
C PKKMlS = PREDICTED ERROR COVARIANCE MATRIX FOR
C SMOOTHING, P(K+1/K)
C IPKKMIS = INVERSE OF PKKMIS
C PSS = ERROR COVARIANCE MATRIX FOR SMOOTHING, P(K/K)
C PX = POSITION DIFFERENCE IN X DIRECTION BETWEEN
C OBSERVED AND PREDICTED STATE ESTIMATES
C I ZX - X(K/K-1)(1,1) I
C PY = POSITION DIFFERENCE IN Y DIRECTION BETWEEN
C OBSERVED AND PREDICTED STATE ESTIMATES
C I ZY - X(K/K-1)(3,1) I
C Q = STATE EXCITATION MATRIX
C R MEASUREMENT NOISE COVARIANCE
C RANGE = DISTANCE FROM SENSOR TO A PRIORI TARGET
C POSITION
C RTOD = RADIAN TO DEGREE CONVERSION FACTOR
C SHDG = TARGET HEADING IN DEGREES BY SMOOTHING
C SPD = TARGET SPEED IN KNOTS BY KALMAN FILTER
C SPKKM1 = STORE THE INITIAL ERROR COVARIANCE, P(01-1)
C SSPD = TARGET SPEED IN KNOTS BY SMOOTHING
C SXPOS = SMOOTHED TARGET POSITION IN X DIRECTION
C SYPOS = SMOOTHED TARGET POSITION IN Y DIRECTION
C TEMP - TEMPORARY STORAGE MATRICES USED IN MATRIX
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C OPERATIONS
C TIMEX = IMPOSSIBLY HIGH CONSTANT FOR DETERMINING THE
C FIRST POINT OF THE MANEUVER WHICH IS IGNORED
C BY THE KALMAN FILTER AND ACCOUNT BY THE SMOOTHING
C FILTER
C TIMEXLO = VARIABLE FOR STORING THE MANEUVER POINTS
C TL = THRESHOLD VALUE FOR THE LOWER MANEUVER GATE
C TLS = VECTOR VARIABLE FOR STORING THE THRESHOLD
C VALUES OF THE LOWER MANEUVER GATE
C TU = THRESHOLD VALUE FOR THE UPPER MANEUVER GATE
C TUS - VECTOR VARIABLE FOR STORING THE THRESHOLD
C VALUES OF THE UPPER MANEUVER GATE
C VARE = VARIANCE OF RESIDUALS PROCESS
C XDIFF - DISTANCE IN X DIRECTION FROM SENSOR TO A
C PRIORI TARGET POSITION
C XKK = ESTIMATED TARGET STATE VECTOR, X(K/K)
C XKKS = SMOOTHED TARGET STATE VECTOR
C XKKM1 - PREDICTED TARGET STATE VECTOR, X(K/K-1)
C XKKMIS - PREDICTED TARGET STATE VECTOR FOR SMOOTHING, X(K+1/K
C XPOS - KALMAN FILTERED TARGET POSITION IN X DIRECTION
C XS - SENSOR POSITION IN X DIRECTION
C XSS - TARGET STATE VECTOR FOR SMOOTHING, X(K/K)
C XT = TRUE TARGET POSITION IN X DIRECTION
C YDIFF - DISTANCE IN Y DIRECTION FROM SENSOR TO A
C PTIORI POSITION
C YPOS - KALMAN FILTERED TARGET POSITION IN DIRECTION
C YS - SENSOR POSITION IN Y DIRECTION
C YT = TRUE TARGET POSITION IN Y DIRECTION
C ZX = OBSERVED POSITION IN X DIRECTION
C ZY = OBSERVED POSITION IN Y DIRECTION

C ** VARIABLE DECLARATIONS ***

REAL*4 XKK(4,1),XKKM1(4,1),PHI(4,4),SXPOS,SYPOS,HDG,PDIFF
REAL*4 H(I,4),G(4,1),TEMPI(I,4),TEMP2(I,I),TEMP3(4,1),ZT

REAL*4 TEMP4(4,4),TEMP5(4,4),PKK(4,4),PKKMI(4,4),HT(4,1)
REAL*4 LXKK(4,1),LPKK(4,4),XS(1O),YS(1O),DBRG(10),BRG(1O)
REAL*4 TEMP6(4,4),PHIT(4,4),IMAT(4,4),XT,YT,SIDG,XPL(100)
REAL*4 VARE(2),E(2),G11,GI3,G21,G23,Q(4,4),SSPD(100),MC
REAL*4 DT,XDIFF,YDIFF,RANGE,XS1,YS1,BRG1,BRKKMI,YPL(100)
REAL*4 OBSERR(200),FAC1,SIGTHT,SIGVT,R,RTOD,SPD(100),BD
REAL*4 XS2,YS2,BRG2,ZX,ZY,DTOR,TRKERR(100),TL,TU,SX,SY
REAL*4 XNNM1(4,1),XSS(4,1),XKKMIS(4,1),THETA,PY,PX,PD
REAL*4 PNNM1(4,4),PSS(4,4),PKKMIS(4,4,100),IPKKMIS(4,4)
REAL*4 AK(4,4),AKT(4,4),STRKERR(100),DTS(100),SPKKMI(4,4)
REAL*4 TEMP1S(4,4),TEMP2S(4,1),TEMP3S(4,1),TH1(4,1),YPOS
REAL*4 TEMP4S(4,4),TEMP5S(4,4),TENP6S(4,4),TH2(4,4),XPOS
REAL*4 XKKS(4,1,100),PKKS(4,4,100),TLS(100),TUS(100),DR(100)
REAL*4 XPU(100),YPU(100),BOC

INTEGER*4 TIME,TIMEP(100),NP,TIMEX,TIMEXB(100),TIMEXLO(100)

C *** OPEN OUTPUT DATA FILES ***
OPEN(UNIT=2,FILE='TRKDATA. DAT',STATUS='OLD')
OPEN(UNIT=3,FILE='THRDATA. DAT',STATUS='NEW')
OPEN(UNIT=4,FILE='CIRCDATA. DAT',STATUS='NEW')
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OPEN(UNIT-6 ,FILE=' MANEUDATA. DAT' ,STATUS=' NEW')
OPEN(UNIT=-7 ,FILE=' TRUDATA. DAT' ,STATUS=' NEW')
OPEN(UNIT=8,FILE=' FILDATA. DAT', STATUS=' NEW'
OPEN(UNIT-9 ,FILE=' SMDATA. DAT' ,STATUS='NEW')

C RADIAN/DEGREE CONVERSION FACTORS ~

RT0D57. 29577951
DTOR7-O. 01745293

C COMPUTE 4X4 IDENTITY MATRIX**

DO 5 I=1,4
DO 5 J=--1, 4
IF (I.EQ.J) THEN

IMATI,J)=1. 0
ELSE

IMAT( I,J)0O. 0
ENDIF

5 CONTINUE

C :' INITIALIZE TIME AND MANEUVER DETECTION ALGORITHM COUNTERS

TIMEM1=0
NP1l
TIMEX=-5000

BOC0. 0

C AACOMPUTE BEARING MEASUREMENT COVARIANCE *
C BEARING ERROR STANDARD DEVIATION = 3 DEGREES

R=-( 3*DTOR)**2

C A.. A:.AA.:A .A:AA :..:A........A.A...A
C *THIS WHERE THE EXTENDED KALMAN FILTERING STARTS*
C ...~. A A A.A .A...... ........ .....A A :.AA..A.1A

C '~READ IN OBSERVATION PACKET (TIME, # OF SENSORS) "'

C DT=-TIME(K)-TIME(K-1)

WRITE(*,*)'EXTENDEDKAMAN FILTERING NOW STARTS'
WRITE(A,*.'.'

810 READ(2,1001,END=800)TIME,XT,YT,XSC1),YS(1),DBRG(1),
* XS(2),YS(2),DBRG(2)

1001 FORMAT(I4,8F9.4)

BD=O. 0
MC0. 0

DC 200 L=-1,2
IF (DBRG(L). GT. 180.0) DBRG(L)=DBRG(L)-360

BRG( L)=DBRGC L)*DTOR
200 CONTINUE

IF (TIME.LT.0) GOTO 800
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DT-TIME -TIMEMi

DTS(NP)=DT

CALL FINDPHI(PHI ,DT)

XS1=XS( 1)
YS1=YS( 1)
XS2=XS( 2)
YS2=YS( 2)
ERG 1=BRG( 1)
BRG2=BRG( 2)

CALL MP(XS1,YS1,XS2,YS2,BRG1,BRG2,ZX,ZY)

IF(TIME.EQ.O) THEN
CALL INITCXS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)

ENDIF

C **PROJECT AHEAD STATE ESTIMATES

C X(K+1/K) = PHI * X(K/K)

CALL MATMUL(PHI,XKK,4,4,1,XKKM1)

C .~..DERIVATION OF THE Q MATRIX *

CALL GETQ(DT,XKKM1,PKK(1,1),PKKC3,3),Q)

C *~PROJECT AHEAD ERROR COVARIANCE ESTIMATES
C P(K+1/K) = (?HI * P(KIK) * PHIT) + Q

CALL MATRAN(PHI,PHIT,4,4)
CALL MATKUL(PHI,PKK,4,4,4,TEMP6)
CALL MATMUL(TEMP6 ,PHIT,4,4,4,TEMP4)

301 CALL MATADD(TEMP4,Q,4,4,1,PKKM1)

C *

IF (TIME. EQ.O0) THEN
DO 542 I=1,4
DO 542 J=AJ.,4
PKKM1(I,J)O. 0

542 CONTINUE

PKKM1(1,1)=10000. 0
PKKM1(3,3)=9999. 9
PKKM1(2,2)=0.25
PKKM1 (4,4)=PKKM 1(2,2)

DO 543 I=1,4
DO 543 J=-1,4
SPKKM1( I,J)=PKKM1( I ,J)

543 CONTINUE
ENDIF

IF (MC.EQ. 1.0) GOTO 303
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C * CALCULATE, THE RESIDUAL DUE TO THE DIFFERENCE BETWEEN
C OBSERVED AND ESTIMATED POSITIONS
C I Z(K) - X(K/K-1)

PX-ZX-XKKM1( 1, 1)
PY=ZY-XKKM1( 3,1)
PD=( PX**2)+CPY**2)
PDIFF=SQRT( PD)

C * CALCULATE THE MANEUVER GATE THRESHOLD VALUES ~'

CALL MANDET(TIME,PDIFF,XKKM1(1,1),XKKM1(3,1),PKM1(1,1),
*~ KM 1(3,3),PM 1(1,3),XPL,YPL,XPU,YPU,TL,TU)
DO-640 IE=1,37

WRITE(4,*)XPL(IE) ,YPLCIE) ,XPU(IE) ,YPU(IE)
640 CONTINUE

C *** STORE THE MANEUVER GATE VALUES AND RESIDUAL DUE TO THE
C POSITION DIFFERENCE

TLS( NP)-TL
TUS(NP)=-TU
DR( NP )=PDIFF

C **MANEUVER DETECTION/DIVERGENCE ALGORITHM

IF C (PDIFF. GE. TL). AND.(CPDIFF. LE. TU)) THEN
WRITE(*,*) 'MANEUVER POSSIBILITY'
MC=1. 0
ZT-ZT+1
IF (ZT. GE. 2.O0) THEN

IF (TIMEX. GT. TIME) THEN
TIMEX=-TIME
TIMEXBCNP)-TIME
TIMEXLO(NP)=-TIMEXB(NP) -c *DTS(NP))
WRITE(5, 1042)TIMEXB(NP) ,TIMEXLO(NP)

1042 FORMATC 214)
END IF
CALL MATSCL(2.0,Q,4,4,Q)
TIMEP(NP)=-TIME
WRITE(6, 1048)TIMEP(NP)

1048 FORMAT( 14)
GOTO 301

ENDIF
ELSE

ZT-O. 0
TIMEX=5000

ENDIF

C **RECOGNAZITION OF THE BAD OBSERVATIONS**

IF (PDIFF.GE.TU) THEN
IF (BOC. NE. 1. O)THEN

BD1. 0
BOC=1. 0
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ELSE
BOC=O. 0

ENDIF
ELSE

BOC=O. 0
END IF

303 MC=0.O0

IF (TIME.EQ.O.O) THEN
DO 544 I=1,4
DO 544 J=1,4
PKKM1( I,J)=SPKM1( I ,J)

544 CONTINUE
ENDIF

204 CONTINUE

DO 210 L=1,2

C CALCULATE RANGE TO TARGET

XDIFF=XKKM1( 1,1)-XS(L)
YDIFF=XKKM1(3, 1) -YSCL)
RANGE=SQRT( XDIFF**2+YDIFF**2)

Cm UPDATE H MATRIX WITH LATEST STATE ESTIMATES
C AND CALCULATE MEASUREMENT ERROR

H( 1, 1)=YDIFF/RANGE**2
H(1,2)0.O
H( 1, 3)=-XDIFF/RANGE**2
H( 1,4)0O.0

BRKKM1=ATAN2(XDIFF ,YDIFF)
EC L)=BRG( L) -BRKKM1

C **COMPUTE KALMAN GAIN MATRIX ***
C G=PKKM1*HT*( H*PKKM1*HT+R) **( -1)

CALL MATRAN(H,HT,1,4)
CALL MATMUL(H,PKKM1,1,4,4,TEMPI)
CALL MATML(TEMP1,HT,1,4, 1,TEMP2)
VARE(L)=TEMP2( 1, 1)+R
FAC1=1/VARE( L)
CALL MATMUL(PKKM1,HT,4,4,1,TEMP3)
CALL MATSCL(FAC1,TEMP3,4,1,G)

C COMPANSATION OF THE BAD OBSERVATIONS '

IF (BD.EQ. 1. 0) THEN

DO 730 I=1,4
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G(I, 1)=O. 0
730 CONTINUE

ENDIF

C ***

IF (L.EQ. 1) THEN
GI1=G( 1, 1)
G13=G(3,1)

ELSE

G21--G( 1,1)
G23--G(3,1)

ENDIF

C *** COMPUTE UPDATED ESTIMATE ***
C X(K/K) = X(K/K-1) + G * E, WHERE E = Z(K) - H(K)*X(K/K-1)

XKK( 1,1)=XKKM1(1,1)+(G(1,1)*E(L))
XKK(2,1)=XKKM1(2,1)+(G(2, 1)*E(L))
XKK(3, 1)=XKKM1(3, 1)+(G(3, 1)*E(L))

XKK(4, 1)=XKKM1(4, 1)+(G(4, 1)*E(L))

C * COMPUTE UPDATED ERROR COVARIANCE MATRIX *
C P(K/K) = (I - G*H) * P(K/K-1)

CALL MATMUL(G,H,4,1,4,TEMP4)
CALL MATSUB( IMAT,TEMP4,4,4,TEMP5)
CALL MATMUL(TEMP5 ,PKKM,4,4,4,PKK)

C * IF MORE MEASUREMENTS,

IF (L.LT.2) THEN

C **" USE UPDATED STATE AND ERROR COVARIANCE ESTIMATES FOR NEXT
C MEASUREMENT *f*

DO 150 I=1,4
DO 150 J=1,4

PKKM1( I,J)=PKK( I,J)
XKKM1(I,1)=XKK(I,1)

150 CONTINUEENDIF
210 CONTINUE

C *** THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM ***

DO 620 I=1,4
XKKS(I,1,NP)=XKK(I,i)

620 CONTINUE

DO 630 I=1,4
DO 630 J=1,4

PKKS(I,J,NP)-PKK(I ,J)
630 CONTINUE
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C Ah COMPUTE TRUE TRACKING AND OBSERVATION ERRORS hA

TRKERR(NP)=SQRT((XT-XKK(1,l))**2+(YT-XKKC3,1))**2)
OBSERR(NP)=SQRT( (XT-ZX)**2+(YT-ZY)**2)

C AAA COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED *

XPOS=XKX( 1,1)
YPOS=XKK( 3,1)
IF (XKK(2,1).EQ.O .AND. XKK(4,1).EQ.O) THEN

HDGO0.0
ELSE

HDG=-RTOD*ATAN2(XKKC2,1) ,XKK(4,1))
END IF
IF (HDG. LT.0. 0) HDG=HDG+360
SPD(NP)=60*SQRTCXKKC2, 1)**2+XKKC4, 1)**2)

WRITEC 7, 1O11)TIME,XT,YT
1011 FORMAT(I4,2F15. 4)

WRITE(8, 1012)TIME,NP,XPOS,YPOS,ZX,ZY,TRKERR(NP) ,OBSERR(NP),
* PKK(1,1)

1012 FORMAT(2I4,7F15. 4)

C *'h UPDATE DATA COUNTER *

NP=NP+l
TIMEM1-TIME

GOTO 810

800 NP=-NP-1

C* THIS IS WHERE THE FIXED-INTERVAL SMOOTHING ALGORITHM STARTS *

WRITEC*,*)'FIXED-INTERVAL SMOOTHING~ NOW STARTS'
WRITE(*,*)'***

DO 3000 KK=1,NP-1

K=NP -KK

DT=DTS(K+1)

TIME=-TIMEM1 -DT
CALL FINDPHI(PHI ,DT)

DO 901 I=1,4
XSS(I,1)=XKKS(I,1,K)

901 CONTINUE

DO 902 I=1,4
DO 902 J=1,4
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PSS( I,J)=PKKS(I ,J,K)
902 CONTINUE

C CALCULATE THE PREDICTED STATE ESTIMATES
C XC K+1/K)=PHI*X( K/K)

CALL MATMUL (PHI,XSS,4,4,1,XKKMlS)

C DERIVATION OF THE Q MATRIX :hh';

CALL GETQ(DT,XKKMlS,PSS(l,l),PSS(3,3),Q)

C CALCULATION OF THE PREDICTED ERROR COVARIANCE MATRIX
C AND COMPANSATION ALGORITHM WHICH USES THE MHANEUVER
C PERIOD DETECTED IN THE EXTENDED KALMAN FILTER ROUTINE**
C PCK+1/K)=PHI*P(K/K)*PHIT+Q

CALL MATRAN (PHI,PHIT,4,4)
CALL MATMUL(PHI,PSS,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)

IF (TIME.EQ.TIMEP(K)) THEN
IF (TIME.EQ.TIIIEP(l)) GOTO 483
CALL MATSCL(2.0,Q,4,4,Q)

ELSE
305 READ( 6,1051, END=-482)TIMEM ,TIMEL
1051 FORMAT(2I4)

IF (TIME. EQ. TIMEL) THEN
CALL MATSCL(2.O,Q,4,4,Q)

ENDIF
GOTO 305

END IF
482 REWIND 6
483 CALL MATADD(TEMP4,Q,4,4,1,PKKM1S)

C *A CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=-P(K/K)*PHIT*INVOP(K+1/K)

CALL MATINV (PKKMlS,4,IPKKMlS)
CALL MATMUL (PHIT,IPKKM1S,4,4,4,TEMPlS)
CALL M4ATMUL (PSS,TEMIPS,4,4,4,AK)

DO 904 I=1,4
XNNM1(I,1)=XKKS(I,1,K+l)

904 CONTINUE

C *** CALCULATE THE SMOOTHED STATE ESTIMATE
C XKKS=X(K/K)+AK*CX(K+1/N) -XC K+1/K)

CALL MATSUB (XNNM1,XKKMIS,4,1,TEiIP2S)
CALL MATMUL (AK,TEMP2S,4,4,1,TEMP3S)
CALL MATADD (XSS,TEMP3S,4,1,1,THl)

DO 903 I=1,4
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XKKS(I,1,K)=THl(I,1)
903 CONTINUE

DO 906 I=1,4
DO 906 J=1,4

PNNM1( I,J)=PKKS( I,J,K+1)
906 CONTINUE

C A~ CALCULATE THE SMOOTHED COVARIANCE MATRIX AA
C PKKS=P(K/K)+AK*IP(K+1/N)-P(K+1/K) I*AKT

CALL MATSUB (PNNM1,PKKM1S,4,4,TEMP4S)
CALL MATRAN (AK,AKT,4,4)
CALL MATHUL (AK,TEMP4S,4,4,4,TEMP5S)
CALL MATMUL (TEMP5S,AKT,4,4,4,TEMP6S)
CALL MATADD (PSS,TEMP6S,4,4,1,TH2)

DO 908 I=1,4
DO 908 J=1,4
PKKS I ,J,K)=TH2( I,J)

908 CONTINUE

C flili COMPUTE ESTIMATED X-Y POSITION, COURSE, AND SPEED *

IF (XKKS(2,1,K).EQ.0 .AND. XKKS(4,1,K).EQ.0) THEN
SHDG-O. 0

ELSE
SHDG=-RTOD*ATAN2(XKKS(2,1,K) ,XKKS(4,1,K))

ENDIF
IF (SHDG. LT. 0. 0) SHDG=SHDG+360
SSPDCK)=60*SQRT(XKKSC2, 1.,K)**2+XKKSC4, 1,K)**2)

TIMEM1-TIME

3000 CONTINUE

REWIND 4

C AAA CALCULATE THE SMOOTHED TRACKING ERROR ~

DO 1100 K1-,NP
SXPOS=XKKS( 1,1 ,K)
SYPOS=XKKS( 3,1 ,K)
READ(4, 1110)TIME,XT,YT
STRKERR(K)=SQRT( (XT-XKKS( 1,1 ,K) )**-'2+(YT-XKKS( 3,1 ,K) )**2)

WRITE(9,1120)K,SXPOS,SYPOS,STRXERR(K),PKKS(1,1,K)

1100 CONTINUE
1110 FORMATCI4,2F15. 4)
1120 FORMATCI4,4F20. 4)

CLOSE(CUNIT=2)
CLOSEC UNIT=-3)
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CLOSE(UNIT=4)
CLOSE(UNIT=5)
CLOSE(UNIT=6)
CLOSE(UNIT=7)
CLOSE(UNIT=8)
CLOSE(UNIT=9)

WRITE(*,*) 'THERE WERE' ,NP,' OBSERVATIONS PROCESSED.'
WRITE(*,*)'FOR GRAPHIC RESULTS COPY'
WRITE(*,*)' 1) FILDATA. DAT'
WRITE(*,*)' 2) MANEUDATA.DAT'
WRITE(*,*)' 3) SMDATA.DAT'
WRITE(*,*)' 4) TRUDATA.DAT'
WRITE(*,*)'TO THE MATLAB SUB-DIRECTORY AND RUN => <SHIPTR.M>'
STOP
END

C* SUBROUTINES *

SUBROUTINE FINDPHI(PHI,DT)

C COMPUTES THE VALUES OF THE PHI MATRIX
C ...........A..A:.A...AaA ..

REAL*4 PHI(4,4),DT

DO 1501 I=1,4
DO 1501 J=1,4
DO 1501 K=1,2

PHI(I,J)=O. 0
1501 CONTINUE

C *** COMPUTE PHI MATRIX *
DO 1500 I=1,4
PHI(I,I)=1. 0

1500 CONTINUE
PHI (1,2)=DT
PHI (3,4)=DT

RETURN

END

SUBROUTINE INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)
C ...... ****A A.
C THIS ROUTINE INITIALIZES THE STATE
C AND ERROR COVARIANCE ESTIMATES
C

REAL*4 XKK(4,1),PKK(4,4)
REAL*4 XSI,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMER,DENOM
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C *** INITIAL STATE ESTIMATE

NUMER=-( YS2*TAN(BR G2))+4(YS1*TAN(BRG1) )+XS2-XS1
DENOM=-TAN( BRG1) -TAN( BRG2)

XKX(3, 1)=NUMER/DENOM
XKK(2, 1)=0. 0
XKK(1,1)=(XKK(3, 1)-YS1)*TAN(BRG1)+XS1
XKK(4,1)=O. 0

C ***: INITIAL ERROR COVARIANCE ESTIM4ATE *

DO 555 I=1,4
DO 555 J--1,4

PKK(I,J)=O. 0
555 CONTINUE

PKK(1,1)=10000. 0
PKK(3,3)=9999. 9
PKK(2,2)=0. 25
PKK(4,4)=PKK(2,2)

RETURN

END

SUBROUTINE GETQ(DT,XKKM1L,Pll,P33,Q)

C CALCULATES STATE EXCITATION MATRIX Q

REAL*4 DT,XKK~bIL4,1),QT,Pll,P33,NT,Q(4,4)
REAL*4 QM,VT, SIGTHT, SIGVT

SIGTHT=0. 0001
SIGVT=O. 0001

IF ((XKKMlL(2,1).EQ.0).OR.(XKKN1L(4,1).EQ.0)) THEN
QT-O. 0
GOTO 200

ENDIF

VT=SQRT((XKKM1L(2, 1)**2)+(XKKM1L(4, 1)**2))
IF (Pl1.GT.P33) THEN
QT=C(((XKKM1L(2, 1)/VT)**2)*SIGVT)+((XKKML(4,1)**2)*SIGTrr)

ELSE
QT=((C(XKKH1L(4, 1)/VT)**2)*SIGVT)+( (XKKM1L( 2, 1)*2)*SIGTHT)

END IF
200 NT=-(DT**4)/4.0

QM-NT*QT

DO 556 I=1,4
DO 556 J=1,4
Q(I,J)=0. 0

556 CONTINUE

87



DO 557 I=1,4
Q(I,I)=QM

CALL MATSCL(O. 1,Q,4,4,Q)

SUBROUTINE MP(XS1,YS1,XS2,YS2,BRG1,BRG2,ZX,ZY)
C
C THIS ROUTINE COMPUTES THE OBSERVED X, Y POSITIONS OF THE
C TARGET USING SENSOR SHIP POSITIONS AND BEARINGS TO THE TARGET
C

REAL*4 ZX,ZY
REAL*4 XS1,YS1,XS2,YS2,BRG1,BRG2
REAL*4 NUMERDENOM

NUIIER=( -YS2*TAN(BRG2) )+(YS1*TAN(BRG1) )+XS2-XS1
DENOM=TAN( BRG1) -TANC BRG2)

ZY=NUMER/DENOM
ZX=(ZY-YS1)*TANC BRG1 )+XS1

RETURN

END

SUBROUTINE MANDET(TIME,DIFF,XT,YT,P1,P3,Pl3,XPL,YPL,
* XPU,YPU,TL,TU)

C
C THIS SUBROUTINE COMPUTES THE THRESHOLD VALUES OF THE
C MANEUVER GATES USING ERROR ELLIPSE EQUATIONS

REAL*4 XT,YT,XPL(21),YPL(21),XPU(21),YPU(21),THE1,SIG2X
REAL*4 SX,SYCT,P1,P13,P3,DIFF,Th,TU,C,D,DTOR,A,B,SIG2Y
REAL*4 THETA,DIV

INTEGER*4 NP,TIME,CO

DTOR0. 0174529
DIV=30. 0
A=2*P13
B=Pl-P3
THE1=O. 5*ATAN2(A,B)
C=(Pl+P3)/2
D=0. 0
IF (P13.EQ.O.O) GOTO 10
D=Pl3/SINC2. 0*THE1)

10 SIG2X=ABS(C+D)
SIG2Y=ABS( C-D)
SX=(SIG2X*0. 5)
SY=(SIG2Y**O. 5)
IF (SX.GT.SY) THEN

TL=3*SX
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TU=8*SX
ELSE

TL=3*SY
TU=8*SY

END IF
CT=COS( THE 1)
ST=-SIN(THEl)

IF (TIME.GT.0) THEN
TL,=TL/DIV
TU=TtJ/DIV

ENDIF

WRITE(3, 1045 )TIME ,TL,TU,DIFF
1045 FORMAT(I4,3F10. 4)

DO 100 1E=1,37
CO=IE-1
THETA=( (360/36)*CO)*DTOR
XPU( IE)---TU*COS(THETA)+XT
YPU( IE)--TU*SINCTHETA)+YT

100 CONTINUE

DO 120 IE=1,37
CO=IE- 1
THETA=( (360/36)*CO)*DTOR
XPL( IE)--TL*COS(THETA)+XT
YPL( IE)--TL*SIN(THETA)+YT

120 CONTINUE
RETURN

END

SUBROUTINE MATHUL(A,B,L,M,N,C)
C *****
C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
c C(L,N) = A(L,M) * B(M,N) ______________

C
REAL*4 A(LM) ,BCM,N) ,C(L,N)

DO 10 I=1,L
DO 10 J=1,N
C(IJ)=0. 0

10 CONTINUE

DO 100 1= 1,L
DO 100 J- 1,N
DO 100 K= 1,M
C(I,J) = 0(1,3) + A(I,K)*B(K,J)

100 CONTINUE

RETURN

END
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SUBROUTINE MATRAN(A,B,N,M)

C THIS ROUTINE TRANSPOSES A MATRIX
C 0 B(M,N) = A'(N,M)

REAL*4 A(N,M), B(M,N)

DO 100 I= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSCL(SC,A,N,M,C)
C ....... .. , .,.., • • *• 

- Ao o o . ..........

C THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
C " C(N,M) = SC * A(N,M)
C

REAL*4 A(N,M), C(N,M), SC

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J) = SC*A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSUB(A,B,N,M,C)
C ., . . ..

C THIS ROUTINE SUBTRACTS TWO MATRICES
C 0 C(N,M) = A(N,M) - B(N,M)
C :.AAAAo , .AAA,, ... AA .. A ,, AAo A•.Ao o.• •

REAL*4 A(N,M),B(N,M),C(N,M)

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J)=A(I,J)-B(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATADD(A,B,N,M,L,C)

C THIS ROUTINE ADDS TWO MATRICES
C C(N,M) = A(N,M) + B(N,M)
C:........*.....................AAA..:AA.A...
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REAL*4 A(N,M),B(N,M),C(N,M,L)
DO 100 I = 1,N
DO 100 J = 1,M
C(I,J,L)=A(I,J)+B(I,J)

100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)_____

C THIS ROUTINE COMPUTES THE INVERSE OF
C A MATRIX
C C(N,N)=INV IA(N,N)I

REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I = 1,N
DO 100 J = 1,N

100 D(I,J)=A(I,J)

DO 115 I=1,N
DO 115 J=N+1,2*N

115 D(I,J)=0.0

DO 120 I=1,N
J=I+N

120 D(I,J)=1.0

DO 240 K1I,N
M=K+1
IF (K.EQ.N) GOTO 180
L=K
DO 140 I=M,N

140 IF (ABS(D(IK))..GT.ABS(D(L,K))) L1I
IF (L.EQ.K) GOTO 180

DO 160 J=K,2*N
TEMP=D(K,J)
D(KJ)=D(LJ)

160 DCL,J)=-TEMP

180 DO 185 J=M,2*N
185 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ.1) GOTO 220
M1=K- 1
DO 200 I=1,M1
DO 200 J=-M,2*N

200 DCI,J)=D(I,J)-DCI,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N
DO 240 J-M,2*N

240 D(I,J)=D(I,J)-D(I,K)*D(K,J)
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260 DO 265 I=1,N
DO 265 J=1,N
K-J+N

265 C(I,J)=D(I,K)

RETURN
END
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APPENDIX B. INPUT DATA FILE FORMATTING ALGORITHM
C RAWDATA. FOR

c***********************,: ,.. :.:.: .:: :. : :. ;. ..,: .. ::,, .:,,::, ,,: ::***

C* ,
C* THIS PROGRAM EMPLOYES A TARGET AND IWO SENSOR SHIPS. IT ASKS FOR *
C* THE INITIAL POSITIONS, SPEEDS AND COURSES OF THE TARGET AND SENSOR *
C* SHIPS. IT ALSO CALLS FOR MANEUVER PERIOD, THE SPEED AND THE COURSE *
C* CHANGE OF THE TARGET DURING THIS MANEUVER PERIOD. THE OUTPUTS *
C* WHICH CONSIST OF NOISY OR NOISE FREE BEARINGS FROM THE SENSOR SHIPS *
C* TO THE TARGET AND POSITIONS OF THE EACH SHIPS ARE STORED IN THE FILE*
C* TRKDATA. DAT TO BE USED BY THE PROGRAM <SHIPMANE. FOR>. *

C *** VARIABLE DEFINATIONS **.

C BRG = MEASURED TARGET BEARINGS.
C CASE = INDICATOR OF THE NOISE EXISTANCE. THE NOISE EXISTS
C FOR POSITIVE VALUE, NO NOISE FOR NEGATIVE VALUE.
C CS, CE = START AND END HEADINGS OF THE MANEUVER.
C DTOR = DEGREE TO RADIAN CONVERSITION FACTOR.
C END = END OF THE TRACKING PROBLEM.
C HDGS = SENSOR SHIP'S HEADING.
C HDGT = TARGET'S HEADING.
C HDGTD = TOTAL HEADING CHANGE DURING THE MANEUVER.
C MS, ME = START AND END TIMES OF THE MANEUVER.
C Ni, N2 = MEASUREMENT NOISESS.
C NM = NUMBER OF MANEUVERS.
C PER = OBSERVATION PERIOD.
C RTOD = RADIAN TO DEGREE CONVERSITION FACTOR.
C SS, SE = START AND END TIMES OF THE MANEUVER.
C SPDS = SENSOR SHIP'S SPEED.
C SPDT = TARGET'S SPEED.
C SPDTD = TOTAL SPEED CHANGE DURING THE MANEUVER.
C TIMED = TOTAL MANEUVER TIME.
C UNHDGCH = HEADING CHANGE PER OBSERVATION.
C UNSPDCH = SPEED CHANCE PER OBSERVATION.
C XDIFF, YDIFF = THE DISTANCES IN THE X AND Y DIRECTIONS FROM SENSOR
C TO A TARGET POSITION.
C XS = SENSOR SHIP'S STATES.
C XT = TARGET'S STATES.

C VARIABLE DECLERATIONS *.*

REAL*4 XT(4,1),XSI(4,1),PHI(4,4),SPDS,HDGS1,SPDS2,HDGS2,SP,HD
REAL*4 DT,SPDT,HDGT,XS2(4,1),TEMP1(4,1),CASE,XDIFF1,YDIFF1
REAL*4 XDIFF2,YDIFF2,Ni,N2,DTOR,RTOD,BRG1,BRG2,CS,CE(20),HDGTD
REAL*4 MS(20),ME(20),SS,SE(20),SPDTD,UNSPDCH(10),UNHDGCH(10)

INTEGER TIME, TIMEMI, NM,PER, END

C * OPEN DATA FILES ***
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OPEN(UNIT=-2,FILE='NOISEI. DAT' ,STATUS='OLD')
OPEN(UNIT=-3,FILE='NOISE2. DAT' 1STATUS='OLD')
OPEN(UNIT=4,FILE=' TRKDATA. DAT , STATUS=' NEW')

C ..... ..........***************~:::..'

WRITE(*,*)'ENTER A NEGATIVE NUMBER FOR NOISELESS CASE;'
WRITE(*,*)'POSITIVE FOR NOISY CASE'
READC*,*)CASE

TIMEM1=0
RTOD=57. 29577951
DTOR=O. 017453293

WRITEC*,*)'ENTER THE OBSERVATION PERIOD AND'
WRITE(*,*)'END OF THE OBSERVATION TIME.'
READ(*,*)PER,END

WRITEC*,*)'INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES) OF TARGET'
READ(*,*)XT(1,l) ,XT(3,1) ,SPDT,HDGT

SP=SPDT
HD=HDGT
XT( 2, 1)=( SPDT/60)*S INC HDGT*DTOR)
XT(4, 1)=( SPDT/60)*COS(HDGT*DTOR)

WRITE(*,*)'FOR SENSOR 1:
WRITEC*,*)'INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES)'
READ(*,*)XS1(1,1),XS1(3,1) ,SPDSl,HDGS1

XS1(2, 1)=(SPDSl/60)*SIN(HDGS1*DTOR)
XS1(4, 1)=(SPDSl/60)*COSCHDGS1*DTOR)

WRITE(*,*)'FOR SENSOR 2:'
WRITE(*,*)'INPUT DESIRED INITIAL X POSITION, Y POSITION,'
WRITE(*,*)'SPEED (IN KNOTS) AND COURSE (IN DEGREES)'
READ(*,*)XS2(1,1) ,XS2(3,1),SPDS2,HDGS2

XS2( 2, 1)=( SPDS2/60)*SIN(HDGS2*DTOR)
XS2(4, 1)=(SPDS2/60)*COS(HDGS2*DTOR)

WRITE(*,*)'HOW MANY TIMES DO YOU WANT TO M AKE M ANE UVER?'
READ(*,*)NM

DO 540 Kl NM
WRITE(*,*) I
WRITE(*,*) '**MANEUVER #/',K

510 WRITE(*,*)'ENTER THE STARTING AND ENDING TIMES OF'
WRITE(*,*)'THE MANEUVER #',K
READ(*,*)MS(K) ,ME(K)

IF ((MS(K).GT.END).OR.(ME(K).GT.END)) THEN

94



WRITE(*,*)'CAREFULL! END OF THE TRACKING IS' ,END
WRITE(*,*)'
GOTO 510

ENDIF

TIMED=ME(K) -MS(K)

520 WRITEC*,*)'ENTER THE STARTING AND ENDING SPEEDS OF'
WRITE(*,*)'THE SPEED MANEUVER #',K
READC*,*) 55 SECK)

IF (SS.NE.SP) THEN
WRITEC*,*) 'CAREFJLL! CURRENT SPEED IS' ,SP
WRITE(*,*)'
GOTO 520

ENDIF

SP=SECK)
SPDTD=SE(K) -SS
UNSPDCH( K)=( SPDTD/TIMED)*PER

530 WRITE(*,*)'ENTER THE STARTING AND ENDING COURSES OF'
WRITEC*,*) 'THE COURSE MANEUVER #' ,K
PEAD(*,*)CS ,CE(K)

IF CCS.NE.HD) THEN
WRITE(* ,*) 'CAREFUL! CURRENT HEADING IS',1[D
WRITE(*,*)'
GOTO 530

END IF

HD=CE( K)
HDGTD=CE(K) -CS
UNHDGCH( K)=( HDGrD/TIMED)*PER

540 CONTINUE

DO 610 J1-, 1000
DO 550 L--l,NM

IF (CTIME.GT.(MS(L))).AND.(TIME.LE.(ME(L)))) THEN

SPDT=-SPDT+UNSPDCH( L)
HDGT=-HDGT+UNHDGCH( L)

IF ((UNSPDCH(L).LT. 0).AND. (SPDT. LT. SE(L))) SPDT=-SE(L)
IF ((UNSPDCH(L).GT.O. O).AND. (SPDT. Gr.SE(L))) SPDT=-SE(L)

IF ((UNHDGCH(L).LT.0O).AND.(HDGT.LT.CECL))) HIDGT=CE(L)
IF ((UNHDGCH(L).GT.O.O).AND.(HDGT.GT.CE(L))) HDGT=-CE(L)

XTC2, 1)=CSPDT/60)*SINCHDGT*DTOR)
XT(4, 1)=( SPDT/60)*COS(HDGTfeDTOR)

ENDIF
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550 CONTINUE

C *~UPDATE TARGET IND SENSOR STATES TO MEASUJREMIENT TIME

DT-TIME-TIMEM3.

C COMPUTE PHI MATRIX ***

CALL FINDPHI(DT,PHI)

C * UPDATE TARGET STATES **
CALL MATM[UL(PHI,XT,4,4,l,TEMP1)
DO 560 1=IA

XT(I,1)=TEMP1CI,1)
560 CONTINlUE

C ** UPDATE SENSOR STATES *

CALL MAThMUL(PHI,XS1,4,4,1,TEMPJ.
DO 570 I=1,4

XS1(I, 1)=TEMP1CI, 1)
570 CONTINUE

CALL MATMUL(PHI,XS2,4,4,1,TEMPl)
DO 580 I=1,4

XS2(I,1)-TEMP1(I,l)
580 CONTINUE

XDIFF1=XTC 1, )-XS1C 1,1)
YDIFF1=XT(3,1)-XS1(3,1)

XDIFF2=XTC1,1)-XS2( 1,1)
YDIFF2=XT(3,1)-XS2(3, 1)

READ( 2,*)N1
READ( 3,*)N2

IF (CASE.G E.0.0) GOTO 590
Nl=0. 0
N2=0.0

590 BRG1=RTOD*ATAN2CXDIFF1 ,YDIFF1)+Nl
IF (BRG1.LT.0.0) BRG1=BRG1+360
BRG2=RTOD*ATAN2CXDIFF2 ,YDIFF2)+N2
IF (BRG2.LT.0. 0) BRG2=BRG2+360

WRITE(4,600)TIME,XT(l,1),XTC3,1),XS1(1,1),XS1(
3 ,1)1

* BRG1,XS2(1,l),XS2(3,1) ,BRG2

600 FORMATC 14,8F9. 4)

TIMEM1TIME
TIME=TIME+PER

IF (TIME. GT.END) GOTO 620
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610 CONTINUE

620 STOP
END

SUBROUTINE FINDPHI(DT,PHI)

C THIS ROUTINE COMPUTES PHI MATRIX

C DIMENSIONS AND DECLERATIQNS
REAL*4 PHI(4,4),DT

PHI(1,1)=1. 0
PHIC 1,2)=DT
PHI(1,3)=O. 0
PHI(1,4)=0. 0
PHI(2,1)=O. 0
PHI(2,2)=1. 0
PHI(2,3)=O. 0
PHI(Z,4)=O. 0
PHI(3,1)=O. 0
PHI(3,2)=O. 0
PHI(3,3)=1. 0
PHI(3,4)=DT
PHI(4,1)O. 0
PHI(4,2)=0. 0
PHI(4,3)=0. 0
PHI(4,4)=1. 0

RETURN

END

SUBROUTINE MATMUL(A,B,L,M,,N,C)
C . . . . .
C THIS ROUTINE MULTIPLIES TWdO MATRICES TOGETHER
C C(L,N) = A(L,M) * B(M,N)
C
C DIMENSIONS AND DECLARATIONS

REAL*4 A(L,M),B(M,N),C(L,N)

DO 10 I=1,L
DO 10 J=1,N
C(I,J)=0. 0

10 CONTINUE

DO 100 I= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
C(I,J) = C(I,J) + A(I,K)*BCK,J)

100 CONTINUE

RETURN

END
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